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Autism prevalence is sex-biased

« ~4:1 males:females have a
diagnosis of autism
spectrum disorder (ASD)
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Why study sex bias in ASD from a biological
perspective?

of

Sex appears to be a potent modulator
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Why study sex bias in ASD from a biological
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Sex appears to be a potent modulator
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Why study sex bias in ASD from a biological
perspective?

Sex appears to be a potent modulator OZ X NP

of ASD risk
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Female Protective Effect (FPE) Model for ASD =
Liability model

Population mean

No. individuals in population

Liability for ASD —>

I.e. exposure to risk factors such as genetic variants
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Female Protective Effect (FPE) Model for ASD =
Multiple threshold liability model
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FPE model predicts that diagnosed
females carry greater risk than males

Liability for ASD
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Higher incidence of disruptive, de
novo variants in ASD females
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Siblings of female cases have higher ASD
traits than siblings of male cases
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Siblings of female cases have higher ASD
traits than siblings of male cases

" Increase in risk to siblings of
. female probands
0.8

Mean sex-and-
zygosity-

0.6

normed Z scores

0.4
0.2
0
Autistic traits in
0.2
SIbImgS? ®  Siblings of All Non-Proband e | oA
IDIINgs O on-rrobanas
N(TEDS) = 3,444 N(CATSS) = 5,340 -0.06 (p<0.0001*5) ‘ -0.05 (p<0.0001 *$)
u Siblings of Male Probands P _
N(TEDS)=262  N(CATSS)=470 | 042 (p=0.002 ) ‘ 054 {p=D026)
= Siblings of Female Probands
N(TEDS)=136  N(CATSS) =230 it ‘ i

Robinson et al, PNAS, 2013



No. individuals in population

FPE model predicts that females respond differently
to liability that is sufficient for diagnosis in males
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FPE model predicts that females respond differently
to liability that is sufficient for diagnosis in males
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FPE model predicts that females respond differently
to liability that is sufficient for diagnosis in males

of
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Females present symptoms differently
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We can use gene expression analysis to identify sex
differences that contribute to the FPE

-
1. ldentify genes with sex-differential
expression levels in the human brain

-

2. Characterize the relationship between sex-

DEX genes and ASD biology

F




Table 1 | Periods of human development and adulthood as defined

in this study A
Period Description Age y
1 Embryonic 4 PCW = Age <8PCW

2 Early fetal 8PCW =Age<10PCW

3 Early fetal 10PCW = Age < 13PCW

4 Early mid-fetal 13PCW=Age<16PCW

5 Early mid-fetal 16 PCW = Age <19 PCW

6 Late mid-fetal 19 PCW = Age <24 PCW

7 Late fetal 24 PCW = Age <38 PCW

8 Neonatal and early infancy OM (birth)y=Age<6M

9 Late infancy 6M=Age<12M

10 Early childhood 1Y=Age<6Y

11 Middle and late childhood 6Y=Age<12Y

12 Adolescence 12Y=Age<20Y

13 Young adulthood 20Y =Age<40Y

14 Middle adulthood 40Y=Age<60Y

15 Late adulthood 60Y <Age

M, postnatal months; PCW, post-conceptional weeks; Y, postnatal years.

Kang, et al., Nature, 2011



There is no evidence of an autosomal gene with XY
levels of sexual dimorphism in the brain
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There is no evidence of an autosomal gene with XY
levels of sexual dimorphism in the brain
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Sex-DEX genes identified by
permutation approach (a<0.0s; top-

ranking sex-DEX in 22 consecutive developmental
periods from same brain region):

* Higher expression in males:

— 505 protein-coding genes, 129
noncoding transcripts

* Higher expression in females:

— 442 protein-coding genes, 466
noncoding transcripts
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Sex-DEX genes are not enriched for neuronal
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Male-DEX genes show enrichment for microglial
and endothelial cell markers
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Male-DEX genes show enrichment for microglial
and endothelial cell markers
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Mean log2(Male expr./

Male-DEX genes show enrichment for microglial
and endothelial cell markers
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We observe a relationship between sex-DEX genes
and ASD biology

4.0 —
Protein-coding sex-DEX genes: o

I 488 male-DEX genes
3.0 —| M 415 female-DEX genes
« p<0.05 (adj.)

+x p<0.01 (ad).)
+»*p<0.001 (ad).)

Fold gene set enrichment
N
o
|

*
O 5 *% o * KKK
. ] KKK

Dataset: Damell Cotney SugathanVoineagu Gupta Gupta Gupta Voineagu Gupta Gupta
M12  Mod1 Mod2 Modé M16 Mod5 Mod7
Gene count: |7e2||2775 5554 || 411 1468 1235 585 || 359 700 562 |

| | Microglial &
Data type: /%/ Astrocytic
7S

Neuronal

& Post-mortem ASD brain
g %,
S @, WGCNA modules

Ty
Q,
s



We observe a relationship between sex-DEX genes
and ASD biology
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Enrichment evidence suggests a male sensitization
model of ASD risk
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Enrichment evidence suggests a male sensitization
model of ASD risk
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Enrichment evidence suggests a male sensitization
model of ASD risk

Large overlap leads to Small overlap leads to
male sensitization relative female protection

Male-enriched Neurobiology Female-enriched
neurobiology shared between neurobiology
sexes




Enrichment evidence suggests a male sensitization
model of ASD risk

Large overlap leads to Small overlap leads to
male sensitization relative female protection

To understand ASD
sex bias, we must
characterize the
intersection of
typical male

neurobiology and
ASD neurobiology | I 3 I | I '

Male-enriched Neurobiology Female-enriched

neurobiology shared between neurobiology
sexes




Summary

* Intersection of ASD neurobiology and sex-differential neurobiology
provides an approach to understand sex bias

* Male-biased expression:
— Microglial genes
— Collagen genes and endothelial cell markers
— Glial genes dysregulated in ASD brain, suggesting a male-sensitization effect

* Validation in independent samples is needed
— Results are preliminary and based on analysis of a single data set



Looking forward

- Well powered, foundational data sets comparing males and females will be

required for:

- Rigorous validation of sex-differential patterns
- Thorough investigation of relationships between sex-differential and ASD biology

Data types

* RNA sequencing for gene
expression

e ChlIP-seq for identifying gene
targets of the estrogen and
androgen receptors

Developmental stages

* Fetal

* Perinatal

* Early postnatal/childhood
* Puberty

* Adulthood

2x2 design

Cell types Brain regions Organisms

* Neurons * Neocortex * Human

* Microglia * Thalamus * Primate

* Astrocytes e Striatum * Mouse
* Cerebellum
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